
 Eyes of the River

2022 Intel Cup Undergraduate Electronic Design Contest

- Embedded System Design Invitational Contest

Final Report

Project Name： Eyes of the River:

Object Recognition on The Edge to Map

Garbage Foci Along River Water

Students: Rafael dos reis de labio

 Mateus Ferreira Borges Soares

 Gabriel Almeida Schneider

Faculty: Centro de Informática

University: Universidade Federal de Pernambuco

 Eyes of the River

2022 Intel Cup Undergraduate Electronic Design Contest

- Embedded System Design Invitational Contest

Declaration of Originality

We hereby declare that this thesis and the work reported herein was

composed and originated entirely by ourselves. Information derived from the

published and unpublished work of others has been acknowledged in the text

and a list of references is given in the references.

Team Members Signature:

Name (in Block Letters): RAFAEL DOS REIS DE LABIO

 MATEUS FERREIRA BORGES SOARES

GABRIEL ALMEIDA SCHNEIDER

Date: 26/07/2022

 Eyes of the River

EYES OF THE RIVER: OBJECT RECOGNITION ON THE

EDGE TO MAP GARBAGE FOCI ALONG RIVER

WATER

ABSTRACT

Water is a primordial substance for the existence of life on earth: plants, animals and human

beings depend on it to survive and thrive. Rivers are a particularly notable source of water for their

positive influence on the lives of the local communities but also their influence on a global scope,

since they are directly linked to the oceans, and, thus, their health also affects the health of the oceans.

One of the biggests sources of river degradation is pollution with plastic and other types of man-made

materials, such as metal cans and food packaging. The first step for caring for a rivers’ well-being,

hence, is understanding where trash accumulates so that cleaning can take efficient action. Mapping

garbage foci however, can be a challenging task to be done manually by humans on big rivers, and,

thus, a solution that helps automate this work could lead to a better efficiency of cleaning efforts. In

this report, we describe a system that utilizes artificial intelligence to perform object detection and

help map garbage location. We consider two different machine learning models and two different

hardware architectures to base our object detection module on, and we test and analyze their results

in order to find the best suited solution for application on the edge.

Key words: machine learning, object detection, HOG, SVM, CNN, FPGA, edge, AI

 Eyes of the River

Content

Chapter 1 – Introduction ……………………………………………….1
Chapter 2 - Proposed Solution …………………………………………2
Chapter 3 – Implementation ……………………………………………3
Chapter 4 – Results……………………………………………………..6
Chapter 5 – Conclusion…………………………………………………8
References………………………………………………………………9

 Eyes of the River

1 (6)

Chapter 1 - Introduction

1.1 Motivation

According to The Ocean Cleanup[1], rivers are a major source of plastic waste in the oceans.

Locally, rivers often provide the means of living for riverside communities and are essential for the

well-being of the nearby ecosystem. In general, rivers are of great importance for human beings and

the environment. A lot of rivers, however, suffer from pollution by man-made objects that degrades

its health and damages nearby life.

Manual efforts to map garbage foci, although a step in the right direction, are slow and

ineffective. Thus, there is the need for a system that helps automate the process of finding where

garbage is located and present this information in a way that helps decision-makers understand how

they should allocate work to organize cleaning efforts more efficiently.

1.2 Goal
Our goal is to design a system that is capable of covering a great area of a river in the smallest

amount of time possible, while capturing and processing all the necessary information to map

garbage foci without the need for an internet connection, since some rivers might be in areas where

cellular signal is not available. We set real-time processing of the gathered data as a requirement,

since storing raw data in hopes of processing them later might lead to high memory requirements

of on-board components, which might be impracticable in a context of an embedded system.

Processing the data in real time also enables the system to adapt itself to dynamic conditions, which

can be a decisive trait in some situations.

 Eyes of the River

2 (6)

Chapter 2 - Proposed Solution

1.1 System Design Overview

 We propose a system based on the GNS-V40 that commands a drone to fly along a

river taking top-down pictures from above, sends those pictures to an android

smartphone that acts as a bridge and then sends the pictures to the GNS-V40, that then

runs one of the three available inference algorithms/architectures (HOG SVM on x86,

HOG SVM on FPGA, CNN on x86) and detects the presence and location of 3 classes

of garbage on the image (bottle, drink can, and milk carton).

 Fig. 1 - Block Diagram of the system.

The android application, ControlePorMensageria[2] is a third party project that turns the

smartphone into a proxy between the drone and another agent, in this case, the GNS-V40, such as

to enable this third agent (the GNS-V40) to send http requests to the app with movement commands

as a way to control the drone indirectly and also receive photos taken by the drone, as well as its

location at the time the photo was taken.

After receiving the image and location information, and after running one of the three

inference algorithms/architectures available, if garbage is found on the image, the GNS-V40 pins

the corresponding location on a map together with the photos taken, so that the user can see visually

where are the garbage foci and what exactly was the type of garbage found on each place.

The design proposes that everything must be run locally on the edge, without any connection

to the internet, and only connecting to local networks such as the one created by the smartphone,

which ensures that the system can remain reliable while on locations without internet access.

 Eyes of the River

3 (6)

Chapter 3 - Implementation

1. Communication Bridges

a. Android - GNS-V40 Bridge
 The Android smartphone communicates with the GNS-V40via a Wi-Fi network

that’s established using the phone as a router. The images are then sent from the smartphone

to the GNS-V40 through the HTTP protocol using the Wi-Fi network that was previously

established. The Application Layer logic is handled by a NodeJS[3] server on the GNS-V40:

it waits for images to be sent whilst handling other tasks, such as communicating with the

HPS on the DE10-Nano and processing images.

Fig. 2 - WiFi Communication between Android smartphone and GNS-V40.

b. GNS-V40 - DE10-Nano Bridge
The GNS-V40 computer sends images via an USART connection to the HPS in the

DE10-Nano which then sends them to the FPGA fabric. Images are encoded in BASE64

encoding in the GNS-V40 and in the DE10-Nano’s ARM Processor (Hard Processor System -

HPS) are decoded back to binary format. The BASE64 encoding was chosen because it’s a

plain text format and by using so we can leverage tools and libraries that are made to send

text via USART. When the HPS reads back the inference results from the FPGA, it sends to

the GNS-V40 in text format also via the USART connection.

 Fig. 3 - USART Communication between GNS-V40 and DE10-Nano.

c. (Inside DE10-Nano) HPS - FPGA bridge
The HPS and the FPGA communicate inside the DE10-Nano via a connection

between an AXI BUS Master (on the HPS side) and an Avalon Bus Slave (on the FPGA
side), which enables HPS→FPGA communication with feedback[4] .We developed a
protocol to exchange data between them in an orderly way by utilizing a control word
that refers to what state the state machine running inside the HPS should be in. Images

 Eyes of the River

4 (6)

are stored in RAM in the FPGA’s fabric alongside a control word (On-Chip memory,
where the first word is for control and the second word onwards is for data). The control
word is used to dictate when the FPGA or HPS should read or write. The speed of
transfer is bound by the underlying AXI bridge and by the packeting that’s needed to
overcome the space limitations in the FPGA’s RAM.

 Fig. 4 - Bus communication inside DE10-Nano.

2. Dataset

a. Virtual dataset generation with Blender
Due to the very specific nature of our object detection use case, no readily available datasets

fulfilled our needs. We considered manually creating a dataset with real photos, but ultimately

decided to utilize virtual generation in order to achieve a high level of control over the objects and

the environment, which would lead us to a high variability of lighting, position of objects and

general configuration of the scene.

We expanded upon the blender-dataset[5] toolkit to create our renders, and implemented

scenes with multiple lighting conditions and three objects: a milk carton, a drinking can and a

bottle, which are types of garbage commonly found in rivers. We generated close-up scenes of

objects and multiple-objects scenes, each one aimed at a different training model, as explained

further in the report.

 Fig. 5 - Close up of a milk carton.

 Fig. 6 - Multi-object scene.

b. Creating multiple datasets
Since the virtual generation is very flexible, we experimented populating our dataset with

different types of lighting and texture shaders, in order to give the dataset a high variability and

 Eyes of the River

5 (6)

ensure it is robust enough to yield good results when running the inference with real-life photos.

 Fig. 7 - Forest ambient lighting.

 Fig. 8 - City ambient lighting.

3. HOG-SVM Model

a. Implementation and how it works
Histogram of Oriented Gradients (HOG) is an image feature extraction technique that,

according to Wikipedia[6] “counts occurrences of gradient orientation in the localized portion of an

image”. It is a way of representing relevant features for object detection related to the edges of the

object.

Support Vector Machine (SVM) is a machine learning algorithm that analyzes data for

classification and regression analysis. It is a way of classifying an image as one of two possible

categories, given a previous training where the correct classification was provided.

We utilized the OpenCV Documentation HOG-SVM example code[7] as a starting point to

train a model with this technique, based on our dataset of close-ups: in the training step, close-ups

of individual objects were assigned as of the “positive” class, while close-ups that contained only

water were designated as of the “negative” class. The result model of this training is a .xml file that

can be used together with an sliding window object detection software to infer the position, on a

given never-seen image, of the objects referred as “positives” during the training.

b. Running on the GNS-V40 (x86 architecture)
Since the GNS-V40 has a CPU, we can utilize the same code from OpenCV’s documentation

to infer the results for any new image, since the sliding window technique is also implemented as a

“test” step during the training process. We modularized this code so it could run outside of the

context of training, and so it could be integrated into the end-software running on the GNS-V40.

c. Running on the FPGA (custom hardware)
Aiming to find what alternative would suit best the edge constraints, we decided to also run

our HOG SVM model inside an FPGA. We used a third party, unreleased HDL module developed

in our research group [8] to run through our dataset and find out what are the advantages and

disadvantages of running this inference technique on a CPU vs running it on a FPGA.

 Eyes of the River

6 (6)

4. CNN Transfer Learning Model

a. Implementation and how it works
 A Convolutional Neural Network (CNN) is a very popular type of Neural Network that

is common in use-cases of object detection. Transfer Learning is the process of, given an

already existing Neural Network, removing its last layers, where new layers, originated by a

new dataset, will be created and cemented on. This makes it possible to take advantage of a

model that already exists and has good results, teaching it new information, so it behaves as if

it was trained, from scratch, solely by this new dataset.

 For this type of training, we used our virtually generated dataset that was originally multi

object per scene, and with the help of the Roboflow[9] online tool, we manually labeled, for

each image, the three types of objects, each belonging to a specific and consistent class. The

Roboflow tool was also helpful in performing data augmentation, which increased the size of

our dataset.

 Fig. 9 - Manual object labeling performed in Roboflow Fig. 10 - Labels utilized in
manual object labeling in Roboflow

We utilized the YOLOV3-tiny model10] as our base-model for the transfer-learning of

our virtual dataset. The transfer learning process was made on a NVIDIA GPU Tesla T4,

allocated inside an instance of a third party Google Collaboratory Notebook[10], in which the

fine tuning of the base model was performed.

b. Running on Google Colab
The inference process was already implemented after the transfer learning in the

mentioned Google Collaboratory project, hence, we got the metrics of its performance.

c. Running on the GNS-V40
 In order to run the output model of the transfer learning process, to infer on new

images inside the GNS-V40, we ran the darknet project[11] locally and also got to observe

the metrics of accuracy and performance of the model.

 Eyes of the River

7 (6)

Chapter 4 - Results

1. Datasets
The validation process of the datasets was two-fold: first, we manually selected the datasets

that presented a higher variability of visuals and scenery. Second, we trained, and transfer learned

models with these datasets and then chose the ones that gave the best results in all training

algorithms and all platform architectures. Datasets with too much “aggressive” data augmentation,

that distorted too much the original images actually performed worse in most cases then datasets

without any data augmentation at all. The best combination of factors for detecting a multi object

scene under a determined light condition was a model trained with a dataset also constrained to that

specific type of lighting.

2. HOG SVM Model
Running on the GNS-V40, the HOG SVM showed a mean time of about 33 milliseconds to

infer one image, while the time of inferring one image on the FPGA detection module was about 3

milliseconds and sometimes lower. There were no notable differences in the accuracy of the model

running in both hardware architectures.

3. CNN Transfer Learning Model
While there was no notable difference in the accuracy of the CNN transfer learning model under

different hardware, the performance boost that running on a dedicated GPU brings was very notable:

the inference of one image on the GNS-V40 took about 1300 milliseconds average, while the

Google Colab computer with a powerful dedicated GPU took only about 4.6 milliseconds average.

4. CNN vs HOG SVM under same dataset
Under the same dataset, the CNN-based solution had a better accuracy than the HOG SVM

one. The HOG SVM, however, tends to be faster under comparable hardware conditions (CNN on

CPU only compared to HOG-SVM on CPU only and CNN on GPU compared to HOG-SVM on

FPGA).

Fig. 11 - Comparing the inference accuracy of the CNN-based solution (left) vs HOG-SVM-

based solution (right).

 Eyes of the River

8 (6)

Chapter 5 - Conclusion

As the results demonstrated, a CNN-based object detection model is more flexible and

yields better accuracy results than the HOG-SVM counterpart when compared under the same

dataset. The HOG-SVM technique, however, is faster on the CPU, when compared to the CNN on

the CPU, and can be even faster than the CNN on a GPU, when executed on an FPGA. The optimal

design for a object detection solution on the edge, thus, must choose between higher portability plus

higher speed but generally worse, or more difficult to train, results (HOG-SVM on an FPGA) and

worse portability plus lower speed, but generally higher accuracy that’s more easy to train (CNN

on a CPU, or GPU).

 The proposed solution, thus, not only fulfills its purpose but also shows that it is flexible,

by having multiple possible ways of implementation, depending on the specific needs of the user.

 Eyes of the River

9 (6)

References

[1] The Ocean Cleanup: https://theoceancleanup.com/sources/

[2] ControlePorMensageria: https://github.com/bcfreitas/ControlePorMensageria

[3] NodeJs: https://nodejs.org/en/

[4] DE1-SoC: ARM HPS and FPGA - Addresses and Communication - Cornell ece5760:

https://people.ece.cornell.edu/land/courses/ece5760/DE1_SOC/HPS_peripherials/FPGA_addr_ind

ex.html

[5] Blender-dataset: https://github.com/ivan-alles/blender-dataset

[6] Histogram of oriented gradients:

https://en.wikipedia.org/wiki/Histogram_of_oriented_gradients

[7]samples/cpp/train_HOG.cpp:

https://docs.opencv.org/3.4/d0/df8/samples_2cpp_2train_HOG_8cpp-example.html

[8] Lucas Cambuim and Edna Barros, FPGA-Based Pedestrian Detection for Collision Prediction

System, Sensors, 2022

[9] Roboflow: https://app.roboflow.com/

[10] Darknet tyni: https://github.com/AlexeyAB/darknet#how-to-train-tiny-yolo-to-detect-your-

custom-objects

[11] Darknet Project: https://pjreddie.com/darknet/

https://theoceancleanup.com/sources/
https://github.com/bcfreitas/ControlePorMensageria
https://nodejs.org/en/
https://en.wikipedia.org/wiki/Histogram_of_oriented_gradients
https://docs.opencv.org/3.4/d0/df8/samples_2cpp_2train_HOG_8cpp-example.html
https://app.roboflow.com/
https://github.com/AlexeyAB/darknet#how-to-train-tiny-yolo-to-detect-your-custom-objects
https://github.com/AlexeyAB/darknet#how-to-train-tiny-yolo-to-detect-your-custom-objects

 Eyes of the River

